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NATURAL CONVECTION COOLING TRANSIENTS
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Abstract—An integral theory of natural convection transients, which has been successfully compared
with experimental results, is used to study the transient temperature response of an element, having
thermal capacity, whose energy input is abruptly terminated. An element thermal capacity parameter
arises in the analysis whose value indicates the boundary between the regimes of true convection
transients and essentially quasi-static processes. This value has been determined by calculations.

NOTATION
Prandtl number dependent constant;
generalizing factor for time;
specific heat of fluid;
thermal capacity of element per unit
surface area;
local gravitational acceleration;
local surface coefficient;
thermal conductivity;
instantaneous energy generation rate
per unit of element surface area;
a velocity, proportional to that in
steady state;
instantaneous local velocity maximum;
height of element;
derivative of the generalized tempera-
ture distribution;
conventional Grashof number, based
upon L and average temperature
excess at beginning of transient, abso-
lute value:
modified Grashof number, based upon
L and surface flux at beginning of
transient, absolute value;
Prandt] number;
constant related to the element storage
capacity, equation (8);
Prandtl number dependent constant;
temperature;
generalized time variable, equation (7);
Prandtl number dependent constant;

Prandtl number dependent constant;
=d,/4,, ..
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Greek symbols
a, thermal diffusivity of fluid;

B, coefficient of thermal expansion of
fluid;

g, thickness of thermal boundary layer;

4, = §,/L.

8, local temperature excess (f — ¢,);

&m.  instantaneous local temperature maxi-
mum (or minimum);

“, fluid absolute viscosity;

e, density of fluid;

T, time;

v, fluid kinematic viscosity;

Xs Umfug;

‘/’- 0n1/0171,,oo;

Om, ¥, ¥, and y are instantaneous average

values over the height of the element.

Subscripts

oc,  at the beginning of the transient;

e, exponential response;

I in the remote fluid;

S, quasi-static.

INTRODUCTION
IN A PrEVIOUS paper [1] the writer presented a
“double integral” method for transients in
natural convection in a single phase fluid. This
theory is applicable to surfaces parallel to the
body force and includes the effect of thermal
capacity in the element which has the convecting
surface, although conduction internal to the
element parallel to the surface is assumed
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negligible. It is assumed that this thermal
capacity element is subject to an energy input
condijtion. The energy input may be variable
in time and either positive, zero, or negative.
However, the assumptions of the analysis suggest
that the theory should not be applied indis-
criminately for transients resulting from a
rapid oscillation in the rate of energy input.

The resulting differential equations have been
solved for a step in energy input, in [1] for an
element of zero element thermal capacity and
in [2] for non-zero element thermal capacity.
The calculations in [2] indicate that, from the
point of view of element temperature response,
there are three regimes for the convection
process in the fluid. The regimes are: essentially
one-dimensional conduction, a true convection
transient, and essentially quasi-static. The cal-
culations indicate the limits of these regimes in
terms of two values of a thermal capacity
parameter Q which arises in the analysis. The
total range for a true convection transient is a
variation of Q of only one order of magnitude.

The responses calculated in [2] were compared
in [3] with measured convection transients in
air and in water for a wide range of conditions.
The measured responses were within 5 per cent
of the predictions of the theory and, in addition,
substantiated the conclusions concerning regimes.

Since the condition for a quasi-static response
is not severe, even for a step in energy input, the
limiting condition for quasi-static response for a
linear increase in energy input rate was investi-
gated. The calculated results are given in [4] as
the limiting value of Q as a function of the time
constant of the linear increase in energy input.
We note that the step input in {2] is the limiting
value of a zero time constant for the energy
input variation.

Other analyses of natural convection transients
are summarized in [1] and [2). To date no exact
treatments have appeared for realistic boundary
conditions.

The present communication applies the theory
of [1] to a circumstance which is very common
in technology, namely the natural convection
cooling or heating of an object having thermal
capacity and which is initially at a temperature
different from its surroundings. It is assumed
that at the beginning of the transient process a
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steady state natural convection process is present
with an energy input rate of g... There is no
meaningful one-dimensional conduction regime
for this case. The present consideration is an
attempt to predict the conditions which separate
essentially quasi-static responses from true
convection transients.

The general differential equations relate the
instantaneous value of the temperature, thermal
layer thickness, and induced velocity maximum
variables (¢, Y, and y) to generalized time T.
The equations apply to vertical plates and to
vertical cylinders under the conditions in which
a laminar boundary analysis in Cartesian
co-ordinates is permissible. The equations in
terms of average values (§, ¥, and %), averaged
over the height of the element, are written as

b d
L eg@ -~ Trd=0 O

) ;7 d
SEY — U%—ET()‘(Y)—— WrE =0 (2)

$_4q"

7=
where the constants, S, U, W.T and a, depend
only upon Prandtl number. The thermal flux
quantities, ¢’ and ¢,, are the instantaneous
and asymptotic (or initial) values of the rate
of energy input to the element per unit of surface
area. The dependent variables , ¥, and 7, the
generalized time 7, and the generalized thermal
capacity variable Q are defined as follows:

0 ar (3)

*o)

O
= g 4
¢ i 4)

4
7=t ©)
Aﬂ: o
X = Umfug (6)
T= %; (b Gr* Pr)®s (7)
— ¢ 4T DY1/5 8
Q—-PCLMO(bG) Pr) (&)
*Note that S — U — W =0, from steady-state
considerations.
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where the Prandtl number dependent quantities
My and b are known from [2] and the other
quantities are defined in the listing of notation.
The modified Grashof number is

Grr = SB90L
kv?
CALCULATIONS

For the problem under consideration here
¢"" =0 for = > 0 and equations (1), (2), and (3)
may be reduced to:

§= 2 el s 32 ©)

—~ /2 - T - T

7 =5§— UQ?"fz —~ Wi?—%}‘”—#ﬁ
(1)
at T=0: §=j=1 (11)

where the prime indicates differentiation with
respect to 7. We note also that ' = 5 = Q1
at T =0,

The quasi-static solution s may be obtained
most simply by neglecting the time rate of
change of energy and momentum in the con-
vection layer in equations (1) and (2), i.e. the
time derivatives in those equations. The differ-
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ential equation and solution for the condition
of (11) are:

— 04 =¥
1

T 4
i+ )
This result is independent of Prandtl number.
The quasi-static decay of element temperature
is shown in Fig. 1. Also shown is the exponential
decay with the same initial slope, i.. . = e~(Z7/@),
The reason for the difference is that the quasi-
static, as calculated here, takes into account
the variation of the convection coefficient with
time, note the 5/4 exponent of ¢ in equation (12).
The simple exponential decay may be sufficiently
close for some purposes.

The full equations [(9) and (10)] were numeric-
ally integrated by a Runge-Kutta technique
at a tolerance of 10-5 for values of the constants
which apply for the Prandtl number of air,
Pr=072, ie. a=02; b=4025x 104
S =16128; U =9242; W ==6-886. These

(12)

s = (13)

values are based upon the steady-state forms
of the temperature and velocity distributions [2].
Calculations were carried out for values of Q
of 1-0, 0-1, and 0-01. An abstract of the results
is tabulated below. The responses are plotted
against 7/Q on Fig. 2. The quasi-static response
is also shown.

TSQ

FiG. 1. The quasi-static and exponential responses.
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FiG. 2. Convection transient responses compared with the quasi-static responses.

Table §. Convection transient and quasi-static solutions

g for Q = s
@ equation
001 01 1-0 (13)
0-01 0-9901 09901 0-9901
0-05 0-9524 0-9523 09515
0-10 0-9091 0-9090 0-9083 0-9060
0-15 0-8694 0-8673 0-8631
0-2 0-8333 0-8329 0-8287 0-8227
03 0-7691 0-7681 0-7578 0-7488
0-4 0-7141 0-7120 0-6943 0-6830
0-5 0-6664 0-6630 0-6373 0-6243
0-6 0-6246 0-6196 0-5718
0-8 0-5548 0-5463 04823
10 0-4990 0-4863 04267 0-4096
1-2 0-4532 0-4363 0-3675 0-3501
1-4 0-4150 0-3939 0-3011
16 0-3830 0-3575 0-2603
1-8 0-3550 0-3259 0-2426 0-2262
2- 0-3309 0-2983 01975
25 0-2828 0-2423 0-1434
30 0-2467 0-2000 0-1066
35 0-2186 0-1673 0-0809
40 0-1961 0-1415 00625
45 01777 0-1208 0-0490
50 0-1624 0-1041 0-0390
60 0-1383 0-0256
70 0-1203 0-0174
80 0-1063 0-0i123
CONCLUSIONS

Comparison of the transient responses with
the quasi-static shows that the value of Q
delimits the regimes of transient and quasi-
static behavior. For Q = 1-0, § — Ji; remains

less than 0-02 over the whole range of 7/Q.
Therefore, one may say that all processes for
which Q 2= 1-0 have an essentially quasi-static
1esponse.

For smaller values of Q the difference is much
greater, particularly if one is interested in the
time necessary, for example, to cool an element
to essentially ambient temperature. To obtain
a value of ¢ of 0-1 for a circumstance having
Q == 0-1, the time interval for the transient result
is 65 per cent greater than that estimated by the
quasi-static. For Q := 0-01, the time interval is
170 per cent greater. This difference could be of
great importance in, for example, electronic
element or reactor element transients and in
circumstances for which thermally induced
stresses are an important aspect of design.
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Résumé—Une théorie intégrale des transitoires par convection natureile, que ’on a comparée avec

succés aux résultats expérimentaux, est utilisée pour ’étude de la réponse transitoire de température

d’un élément, ayant une capacité thermique, dont I’alimentation en énergie est arrétée brutalement. Un

parameétre de capacité thermique de 1’élément apparait dans 1’analyse; sa valeur indique la limite entre

les régimes de vrais transitoires de convection et les processus essentiellement quasi-statiques. On a
déterminé cette valeur par des calculs.

Zusammenfassung—FEine Integralmethode der instationdren freien Konvektion, die erfolgreich mit

Versuchsergebnissen verglichen wurde, dient dazu, die instationdre Temperaturinderung eines Elements

bestimmter Warmekapazitit zu untersuchen, wenn die Energiezufuhr plétzlich unterbrochen wird. Ein

Parameter fiir die Warmekapazitit des Elements erscheint in der Analyse; sein Wert gibt die Grenze an

zwischen den Bereichen instationédrer Konvektion und vorwiegend quasistationirer Prozesse. Dieser Wert
wurde berechnet.

Augoramua—/IJIA N3yYeHUs HECTALMOHADHOIO HM3MEHEHHA TEMIEPATYDH SJIEeMEHTa, UMelo-

LIEro TeIJI0eMKOCTH, HOXBOX TEIa K KOTOPOMY BHE3AIHO IIPEKPAINeH, MCIOJIb3YeTCA WHTer-

pasbHad TEOPHMA HECTALMOHAPHON CBOGOJHON KOHBEKLHH, RAOMAA pesyabTATH, XOPOLIO

COBIAJAOLIME € DKCIICPUMEHTAIBHEIMKI JAAHHBMH. AHAIN3 TOKA3HBAET HAJMYME MMAPaAMeTpa

TEIUIOEMKOCTH 3JEMEHTA, BHAYeHUMEe KOTOPOr0 YKA3bIBAeT TPAHMILYy MEHAYy pemuMaMm jeli-

CTBUTEJIBHO HECTALMOHADHON KOHBEKIMH I KBasU-CTAIMOHAPHHIM. OJTa BeaudmHa OHUIa
BEIYHCIIEHA.
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